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A numerical technique is presented which allows one t;o estimate hydrodynamic forces 
and torques or translational and angular velocities of particles in a general flow field. 
Particlesolid wall interactions can be readily included. The base functions used in 
tht: technique presented are singular fundamental solutions of the Stokes equation 
for a point force and a point source. The least-square approach is used preferentially 
in lsrder to find the intensities of these singularities. Test calculations show that the 
results are self-consistent and in fairly good agreement with the exact solutions in 
a wide range of conditions. For example, for a spherical particle moving with no slip 
towards the solid wall, it  has been shown that the method can provide good estimates 
of ,;he resistance coefficient up to separations of the order of 5 yo of the particle radius. 
Wi? believe that better agreement, for smaller separations, is within reach at the 
expense of increased computer. costs. For spheroidal particles good results were 
obtained for aspect ratio in the range 0.5-2.0. 

1. Introduction 
.Knowledge of hydrodynamic forces acting on particles is essential in any attempt 

to analyse the mass transfer or rheological properties pf colloidal systems. Until now 
ony  some dilute systems of particles bf simple shape could be considered as well 
described in the sense that an exact analytical solution of the Stokes equation is 
avilable. However, even for spherical particles, problems important for the kinetics 
of particle deposition, such as interactions between particles deposited onto a solid 
wall and particles freely suspended in a flow, have not been solved owing to a lack 
of symmetry required to solve these problems in adanalytical manner. Generally 
speaking, the solution of the Stokes equation can be found in an analytical form for 
an,y of the orthogonal reference systems if the geometry of the considered particles 
is such that coordinate surfaces fit the physical boundaries of the problem. Good 
exrtmples of this approach include the classic problem of a spherical particle in a 
uniform flow, solved by Stokes (1851), and ellipsoidal or two spherical particles in 
a linear flow discussed by Stimson t Jeffery (1926). In more complicated cases a 
number of approximate treatments are possible; e.g. an extensive theory exists to 
deimibe behaviour of slender bodies (e.g. Burgers 1938; Cox 1970; Batchelor 1970; 
R~tssell et al. 1977; Liron 1978, Liron t Mochon 1976b). The approach is based on 
tho distribution of singularities and their higher moments along the slender body in 
such a way that appropriate boundary conditions at the surface of the body are 
fulfilled, at least approximately. 

t On leave from Jagiellonian University, Cracow, Poland. 
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Chwang k Wu (1974, 1975) and Chwang (1975) have explored the fundamental 
singular solution of the Stokes equation to obtain solutions for several specific body 
shapes translating and rotating in a viscous fluid. Some rules regarding the type and 
method of distributing the singularities have been given as conclusions of these 
papers. From a generalization of observations for various axisymmetrical bodies 
placed in a variety of linear and quadratic flows i t  was found that (i) the flow alone 
determines the necessary types of singularities, (ii) the distribution range of all 
singularities seems to depend solely on body geometry, and (iii), if the solution for 
a flow of reduced degree a V / a q  (i = 1 ,2 ,3 )  requires certain singularities, then the 
xi derivatives of these singularities are needed to construct the solution associated 
with the flow V. Regarding the distribution range of the singularities, it was pointed 
out that some results for plane-symmetric bodies in a potential flow may also be valid 
in all types of Stokes flow. By providing the exact solution of the Stokes equation 
in an elegant, closed form, the singularity method proved to be a useful alternative 
to the more standard methods of solution. Unfortunately one cannot, in a straight- 
forward manner, generalize this approach to systems of many particles or to particles 
in the vicinity of a wall. 

In  a series of papers, Gluckman, Pfeffer k Weinbaum (1971) and Gluckman, 
Weinbaum & Pfeffer (1972) developed a new method for treating the slow viscous 
motion past finite assembles of particles of arbitrary shape, termed the multipole 
representation technique. The approach is based on the theory that the solution for 
any object conforming to a natural coordinate system in a particle assemblage can be 
approximated by a truncated series of multi-lobular disturbances in which the 
accuracy of the representation is systematically improved by the addition of 
higher-order multipoles. For example, for a system of spherical particles the solution 
is found in terms of Legendre functions. Taking advantage of the symmetry of the 
system, it is possible to eliminate a number of the terms of the general solution. The 
remaining coefficients can then be determined using the boundary collocation 
principle, namely one can require that the no-slip boundary condition for a given 
number of surface points on each sphere be satisfied. If the infinite series is truncated 
to yield a proper number of coefficients, a determined system of linear equations can 
be found which allows one to calculate the unknown coefficients. Usually, a fast 
convergence to the exact solution is observed as the number of boundary points is 
increased, provided that some principles are met regarding the distribution of the 
collocation points. In the case of two spherical particles settling in an arbitrary 
orientation under gravity, Gantos, Pfeffer & Weinbaum (1978) noted that, while a 
given configuration of points produces good results over a certain range of relative 
positions, the same set of points could produce substantial errors outside this region. 
Therefore, the distribution of the points over the particle surface must be carefully 
tested in every case in order to avoid so-called ill-conditioning problems. In general 
the method is useful and, from a numerical point of view, it provides a fast way 
of estimating the hydrodynamic forces and velocities of particles for a variety of 
systems (Leichtberg, Weinbaum k Pfeffer 1976 ; Gantosetal. 1978 ; Gantos, Weinbaum 
BE Pfeffer 1980; Dagan, Weinbaum & Pfeffer 1 9 8 2 ~ ) .  However, every system requires 
derivation and careful analysis of the base functions. 

Although, in principle, both methods discussed can be generalized to purely 
three-dimensional problems, little has been done in this field owing to the complexity 
of the problem. 

Youngren k Acrivos (1975) used the boundary-element method to calculate 
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hydrodynamic forces and torques acting on spheroidal and cylindrical particles in a 
uniform and simple shear flow. The solution of the Stokes equations was expressed 
in the form of linear integral equations for the Stokeslets distribution over the particle 
surface. The required density of the Stokeslets, identical with the surface stress 
forces, can be obtained numerically by reducing the integral equations to a system 
of linear algebraic equations. The technique has been successfully tested against the 
analytical solutions for spheroidal particles in a shear flow. Rallison & Acrivos (1978) 
applied a similar method in order to determine the deformation and condition of 
break-up in shear of a liquid drop suspended in another liquid of different viscosity. 
This very general method, which can be used in the case of bodies of arbitrary shape, 
so far has not been used to analyse flow fields around systems of particles. 

The objective of this paper is to show some results of an attempt to  find 
hydrodynamic forces and velocities of arbitrarily shaped particles, placed in an 
arbitrary flow field, particularly in the vicinity of the wall, using a singular point 
solution as the base function. The strength of the singular forces and sources situated 
inside each particle will be found in such a way that the appropriate boundary 
conditions at the particle surface will be fulfilled, at least approximately. As one can 
see, the method presented belongs to the same family as the three methods discussed 
above. Singular fundamental solutions of the Stokes equation are used to find the 
flow field for a given system. The method has points in common with the multipole 
representation technique due to the fact that both methods can be considered as 
boundary-collocation or boundary-least-square approaches. The technique presented 
is general in the sense that we deny ourselves any advantages of simplifications 
related to the symmetry of the particular system. However, if the system contains 
elements of symmetry, the amount of computations can be reduced in a straight- 
forward manner. 

The organization of the paper is as follows. In  $2 we shall discuss the general 
background of the method with a short presentation of the formulae used later on. 
In $3, results will be given of calculations of hydrodynamic forces and torques acting 
on particles. The method of calculating particle velocities will be discussed in $4. 
Finally, in $5, we shall present a discussion and summarize the conclusions of the 
paper. Most of the calculations shown in this paper have been carried out in order 
to estimate the range of applicability of the method, especially for strong particle- 
particle or particle-wall interactions. 

2. Formulation of the problem 
We shall consider the flow field satisfying the Stokes equation 

and the continuity equation v - u  = 0,  (2) 

where u = (ul, u2, u3) is the velocity vector defined in a Cartesian coordinate system 
xl, x2, x3, ; p is the pressure and p the dynamic Viscosity of the fluid. In  an unbounded 
fluid a flow disturbance produced by a point force flv) acting at y = (yl, y2, y3) can 
be expressed in terms of velocity components and pressure as (Lamb 1953) : 

%(X) = ti,(X,Y).fjdY), P(X) = Sj(X,Y)fjdY), (3% 6 )  
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where (4) 

with rr = x,-yi, T = (rt r$ and S,, the Kronecker delta. The exact solution for a 
force singularity, as noted by Blake (1971) and Blake & Chwang (1974), in the 
presence of a stationary plane boundary x3 = 0 with the no-slip boundary condition, 
can be expressed by (3) with t,, and gt given by: 

where a = 1,2; h = y3 and R = [ ( ~ , - - y , ) ~ + ( x ~ - y ~ ) ~ + ( z ~ + y ~ ) ~ ] f .  The solution for 
a point source, with mass outflow q in unit time in an unbounded fluid, can be 
expressed as 

(8) 
rt 

st = 1.9‘ where 

In the presence of a stationary plane boundary x3 = 0, st is given by (Blake & Chwang 
1974) 

R, 3R { R 3 R 3)+2h(%-!E&) 
R6 * 

.Yr= .@+- -2 -- (’ 2) (R3 R6 (9) 

For unbounded systems, higher moments of the singularities can easily be found by 
differentiation. As was pointed out by Blake t Chwang (1974), this method cannot 
be applied when a boundary is present. However, in principle the same effect as 
produced by higher moments of the singularities can be obtained by a proper distri- 
bution of the fundamental ones. 

Consider a system of N groups, each consisting of M force and source singularities. 
Due to the linearity of the Stokes equation, the disturbance of velocity at point x 
can be expressed quite generally as 

(10) 

where ymn denotes the position vector of the mth singularity (m = 1,2, . . , , M) in the 
nth group (n = 1,2, ..., N ) .  

Let S, denote the surface confining the nth group of the singularities and let xSn’ 
be one of the S points situated at Snt. If Sne is identified with the surface of the solid 
body, the velocity of the xSn’ point can be expressed as 

(11) 

where uon‘ and an’ are translational and angular velocities respectively and P‘ is the 
surface position vector measured with respect to the origin of the particle. The 
difference between u(xsn’) and the fluid velocity, where the fluid velocity consists of 

= x t t j ( x , Y m n ) . f j d y m n ) +  x st (X,Ymn)PdYmn)t  
mn mn 

U(X8n’)  = uOn +an’ x e n ’ ,  
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the disturbance velocity given by (10) and external flow field V(x) ,  which itself 
satisfies the Stokes equation, can in general be expressed as: 

- x 8t(Xsn’,Ymn)Omn)- V;(xsn’), (12) 
mn 

where E ~ , ~  is the unit isotropic triadic. When the no-slip boundary conditions are 
appropriate, D,(xsn‘) should be identically zero for every point on each particle 
surface. In  principle this can be achieved by a proper distribution of the singularities 
in the vicinity of the centre (or the centreline in the case of slender bodies) of each 
particle. For a spherical particle placed in an unbounded uniform flow, it suffices to 
place the singular force and source doublet in the centre of the particle to obtain zero 
velocity at the sphere surface. In  this case the intensity of the singular force is exactly 
6npa V, (a being the particle radius and V, the velocity of the uniform flow). The source 
doublet intensity is equal to Fz aa/6p. 

As was shown by Cox & Brenner (1967), the velocity disturbance produced by an 
arbitrary body can be presented in the form of a multipole expansion. This is 
equivalent to having singular forces, force doublets, quadrupoles, etc. placed in the 
particle centre. Intensity of the poles is uniquely determined by the hydrodynamic 
forces acting at the particle surface. The question arises as to whether or not these 
intensities can be determined uniquely from the boundary conditions imposed on the 
system. From integral solutions of the Stokes equation, it follows that this is true 
in principle. However it is not obvious that the same is true for any arbitrary 
distribution of a limited number of singularities inside the particle. Therefore one may 
expect that the method will give reasonable estimates of the hydrodynamic forces 
for a given distribution of singularities as long as the flow field is not too complicated. 
In  order to find the range of applicability of the technique presented, we will discuss 
a number of test calculations for which exact solutions of the Stokes equation exist, 

Once an optimum distribution of forces has been found, one can calculate the force 
and torque exerted on the particle. The total force is equal to 

F = Ef lYmn) ,  (13) 
m 

and the torque of the nth particle can be calculated as 

where rf(ymn) is a local component of the force position vector. 
In order to obtain a better insight into the method, we would like to return to the 

question of how the singular point solution can be used to find an approximate 
solution in some simple cases. Burgers (1938) has shown that a singular solution (3) 
can be used to find the Stokes formula for the resistance of a sphere. If the spherical 
particle is held at a uniform velocity with components ( V,, 0, 0), in order to keep it 
stationary one has to exert a force upon the sphere in the negative x-direction. 
Disturbances produced by such a sphere will not differ much from that produced by 
a single point force acting at the origin provided that we are a certain distance away 
from the origin and that the direction and magnitude .of the forces are the same. In 
order to find the force acting on the sphere we may look for intensities of the singular 
force such that the mean value of the resultant flow velocity V, + u,, u2, u3 will vanish. 
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Here u6 is given by 

Writing this explicitly 
ui = 4, h . 

where a is a sphere radius. The term ( V, + u,),,, vanishes iff, = - 6xpa V,. Thus 
the Stokes formula is obtained by considering the mean values of the velocity 
components over the sphere surface. 

Burgers also showed (1938) that the proper expression for the spherical particle 
in parabolic flow can be deduced in a similar way. Tam (1969) has used the point-force 
approximation to obtain the correction factor to the Stokes equation for two spherical 
particles in a uniform flow. Analytical formulae which were obtained agree with the 
exact solution of Jeffery for separations larger than a few particle radii, but even for 
two spheres in contact the error was below 9 %. We shall generalize this approach 
to deal with arbitrarily distributed particles in the vicinity of a wall. A number of 
singularities will be used in order to obtain more accurate solutions of the problem 
in the cases of non-spherical particles or strong particle-wall interactions. 

3. Hydrodynamic drag on particles 
3.1. One singular force approximation 

Let us consider N spherical particles with centres at x 1 , x 2 ,  ... , x N  placed in an 
external flow V(x) ,  which itself satisfies both the Stokes and continuity equations. 
By generalizing Burgers' approach, if a singular point force acts a t  the centre of each 
particle, we may look for intensities of the forces such that the integral 

will vanish. This equation leads directly to a system of linear equations 

where 

n 

The surface integrals (17) and (18) were calculated numerically using an 8th-order 
numerical formula of the Gaussian type (Abramowitz & Stegun 1964). In  order to 
check the method, zi number of test calculations were conducted. First, as expected, 
the calculations yield proper results for single spherical particles in an unbounded 
fluid. Figure 1 shows the drag correction factor h = F,/Gxpa V, for the Stokes formula 
for a system of two spheres in a uniform flow. The solid line represents the exact 
solution of Jeffrey, while the dashed line shows the result obtained using the present 
method. The points were calculated by introducing more singularities in each particle, 
as discussed in 53.2. It can be seen that a good agreement between exact and 
approximate values of the correction factor is observed even if only one singular point 



A singularity method for low-Reynolds-number flows 7 

1 .o 

0.9 

A 

0.8 

0.7 

0.6 

I I I I I I 

I I I I I I 

1 2  4 6 8 10 12 
0.5 

d/2a 

FIGURE 1. Drag correction factor for two spheres in a uniform 
flow as a function of their separation d /2a .  
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FIQURE 2. (a) Drag correction factor A, for chains containing different numbers of spheres with 
d/2a = 2. ( b )  Drag correction factor A, for a seven-sphere chain at different sphere spacings. 
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is used for d/2a > 2. For two spheres in contact the error is 9 %. Similar calculations 
were performed for linear systems of spherical particles. Results are shown in 
figure 2. It should be noted that the solid lines which connect the points have no 
physical meaning, as the drag correction factor At has a discrete value for each sphere. 
Corrections determined for chains containing various numbers of spheres at spacing 
d/2a = 2 can be compared with results of Gluckman et al. (1971) which were obtained 
by use of the multipole collocation technique. The maximum error of these calculations 
was estimated a t  2.5 yo. The maximum difference between Gluckman et al. and results 
presented here occurs for the three-particle system and is 8 yo. For larger separations 
the difference becomes negligible. Taking into account the simplicity of the prescribed 
technique and the fact that i t  can be used for any spatial distribution of particles, 
one can see the advantage over other methods, especially when only approximate 
information on drag forces is required. 

Figure 3 shows results of calculations for linear aggregates of spherical particles 
in contact. The calculations were performed for uniform flow, either perpendicular 
(curve 1) or parallel (curve 2) to the aggregate axis. One may expect that the drag 
on such systems should not differ very much from that on an elongated spheroid or 
cylinder. In particular, for a spheroid with semi-axes a and b (with b measured along 
the symmetry axis), Oberbeck’s formula (Lamb 1953) for uniform flow in the 
direction of the symmetry axis leads to a force of magnitude 

For large b/a this formula reduces to 

1 

In - -0.5 
F, = 47~pbV, 

(3 
For a finite circular cylinder, Burgers (1938) obtained the formula 

1 

where a1 = 0.72, b is the semi-length, and a the radius of the cylinder. Curves 3 and 
4 in figure 3 show the correction factors 

4 A, = ~ 

6npa V, 

calculated from formula (20) and (21) respectively. As one can see, the correction 
factors calculated for a system of spheres lie between the curves obtained for 
cylindrical and spheroidal particles with similar geometry. When particles are 
oriented perpendicular to the uniform flow the theoretical expressions for a long 
cylinder and spheroid are the same (Burgers 1938) and can be expressed as 

1 
= 81~pbV, 
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FIQURE 3. Dimensionless resistance force A, = F,/6xjm V, of a straight chains of N spheres in a 
uniform flow: curve 1, chain perpendicular to the flow; curve 2, chain parallel to the flow ; curves 
3 and 5 show calculated resistance of spheroidal and cylindrical particles in proper orientations; 
points, experimental data of Horvath (1974). 

The forces calculated for linear systems of spheres appear to be about 6 % higher than 
those predicted for finite cylinders and spheroids (curve 5) .  Dots on figure 3 show 
experimental values of the correction factors obtained by Horvath (1974). Excellent 
agreement between experimental and theoretical values is obtained when the 
aggregate is oriented perpendicular to the flow. For parallel orientation an error of 
5-8 yo is observed. Both experimental and theoretical calculations show that the 
presence of a solid wall may have a significant influence on the settling rate of long 
aggregates. In fact, for h/a = 60, the correction factor accounting for wall interaction 
for a single sphere, is equal to 1.9%. Our calculations show that, for 15 spheres in 
contact moving perpendicularly to the wall, the equivalent correction is about 10 %. 
When the aggregate is oriented parallel to the wall and moves along its axis, the 
presence of the wall can change its mobility by 2.3 % compared with 1.2 yo for a single 
particle. When a linear system of 15 spheres moves perpendicularly to the wall along 
the symmetry axis, the correction factor for h/a = 60, where h now describes the 
position of the central particle, is equal to 5.9%. All these results can be obtained 
in a straightforward manner by the presented technique if (6a)  is used to describe tr, 
in (16)-(18). 

3.2. Mdtiple singularities in every particle 
In order to increase the accuracy of the calculations and to make it possible to find 
the torque on the particle, let us return to (12), where it was assumed that in every 
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particle M singular forces and M singular sources were present. Let us assume that 
D,(xSn') is equal to zero. In  order to calculate the drag on the particle, we will assume 
that the velocity of the particles and the external flow field is known. One obtains 
therefore a set of 3SN linear equations with 3MN unknown values of the singular 
force intensities and M N  unknown source intensities. Thus the equation 

may be written in shorthand notation as Cx = d, where x stands for unknown values 
of the forces and sources intensities, C is a proper matrix which depends on the 
geometry of the system and d is a vector determined by the external flow and 
movement of the particle. If 4MN > 3NS one obtains an overdetermined system of 
linear equations which can be solved in a number of different ways, e.g. in such a 
way that the sum of the squares of the residuals will be minimized. The adopted 
calculation algorithm was as follows. First, we used one singular point force placed 
in the particle centre. Using the approach described in $3.1, its optimum value was 
found. In a second step, at a given number of surface points of every particle, the 
value of the discrepancy between the required and approximate value of the velocity 
was calculated and by solving the overdetermined system of equations the intensities 
of the singular forces and sources were calculated using the least-squares method. To 
do this, in most of the calculations we used subroutine LLSQF of the IMSL library. 
It is possible that the matrix C may not be of full rank because some columns of 
C may be linear combinations of other columns due to an inherent symmetry of the 
system. The linearity-dependent columns were eliminated from the matrix C and a 
lower-rank problem was subsequently solved. In order to determine the rank of the 
matrix a tolerance parameter T must be defined. During calculation, column pivoting 
was performed to introduce columns of C one at a time into the basis. At each step 
the column that produced the larger reduction of the residual sum of squares was 
selected. The process was terminated if inclusion of the next column would result in 
a matrix with condition number greater than or equal to 1 / ~  (Lawson & Hanson 1974). 
For calculations performed with double precision for spherical particles T was usually 
equal to 10-6-10-s. 

Two other methods of solution of the overdetermined system of linear equations 
were tested. The first was based on finding the solution which minimizes the 
maximum absolute value of the residuals (the Chebyshev norm) (Barrodale & 
Phillips 1975). However, this method failed to find a proper solution in the sense that 
it did not reflect the expected symmetry of the distributed forces. The second method 
tested minimized the sum of the absolute values of the residuals (L1 solution, 
Barrodale & Roberts 1980). Results obtained by means of this method were very close 
to the least-square solutions. However in some cases, e.g. for small particlewall 
separations, rounding errors became significant making the subroutine break down. 
The efficiency of both Chebyshev's and the L1 method was much less than that of 
the least-squares method. 

In the actual calculations, usually 7-14 singularities distributed symmetrically 
around the particle centre were used. As a first test let us consider a spherical particle 
in a uniform and simple shear flow. In this calculation 7 singular forces and sources 
were used with coordinates ( O , O ,  0 ) ,  ( + b ,  O , O ) ,  (0, & b,  0) and ( O , O ,  + b )  relative to the 
particle centre where b is made dimensionless with respect to the particle radius. 
Results for various values of b are shown in table 1. As one can see, in the whole range 
of b the calculated hydrodynamic force remains practically unchanged. Furthermore, 
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~~ 

b 

0.004 
0.01 
0.02 
0.04 
0.08 
0.16 
0.32 
0.64 

Ft 
1 .oOOo 
1 .oOOo 
1 .oOOo 
1 .oOOo 
0.9999 
0.9998 
0.9988 
1.0035 

t 
8.4 x 10-lo 
1.1 x 10-8 

2.8 x 10-6 
1.7 x 10-7 

4.5 x 10-5 
7.2 x 10-4 
1 . 1  x 10-2 
9.4 x 10-2 

t F = F ~ ( c a ~ c " , a ~ ~ * , / 6 ~ ~ a V ~ .  
$ Zsq - sum of squares of residuals at 66 surface points of the spherical particle. 

TABLE 1. Test calculations for various distributions of singularities 

100 
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FIGURE 4. Correction factor to Stokes law for a sphere moving toward the solid wall 88 a function 
of particle-wall distance H: curve 1 ,  exact solution; curves 2 and 3, approximate solution obtained 
by present technique for various numbers of singular points. 

the sum of source intensities is equal to zero within rounding errors in all cases. This 
reflects the fact that the net production of fluid inside the particle should equal zero. 
It is worthwhile to note that this condition was not forced on the system artificially 
during the calculations; rather it reflects the ability of the method to satisfy the 
proper boundary conditions imposed on the system in a consistent way. 

As a second example, let us consider a spherical particle moving towards a solid 
wall on which we apply the no-slip boundary condition. An exact expression for the 
correction factor to the Stokes equation F, = 6xap V, obtained by Maude (1961) and 
Brenner (1961) is 

, (25) 
co n(n+ l )  2 s inh[(2n+l)a]+(2n+l)  sinh2(a) 

A-l (2n- 1) (2n+3) 4 sinha [(n+a)a]- (2n+ 1)2 sinh2 (a) - '1 f, = $sinha X 
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in which a = cosh-’ (H+ l ) ,  where H = h/a -  1.  The dependence of fl versus H is 
shown in figure 4, curve 1.  For large H, fl x 1 + i H  and for small separations when 
resistance forces are mainly due to squeezing the fluid out of the gap between particle 
and wall f r 1/H. Figure 4, curve 3, shows fi as a function of H calculated using 13 
singular forces distributed symmetrically at ( O , O ,  0), ( & b,  O , O ) ,  (0, &b, 0) and 
( O , O ,  f b) with b = 0.01 and 0.1. The number of surface points was changed between 
26 and 68 without significant influence on the results. As one can see, for particle-wall 
separations larger than one particle radius, the calculated results are in excellent 
agreement with the exact ones calculated from (25). For smaller separations the 
agreement is fairly good for H > 0.2 ; however, the method fails to predict proper 
values of the coefficient for H+O. In fact the calculated values of fi are practically 
constant for H < 0.05. The reason for the discrepancy is obviously related to the fact 
that for small separations almost all resistance is due to squeezing the fluid out of 
the small gap between the particle and the wall. As noted earlier, one cannot expect 
that such a small number of singularities will be able to represent properly such a 
complicated flow field as exists in the vicinity of the particle surface. In fact, when 
20 singular points were used with 66 surface points, it  was possible to obtain much 
better agreement even for separations smaller than 10 yo of the particle radii (curve 
2, figure 4). This clearly indicates that the accuracy of the method can be controlled 
by the number of singular points. However, for what follows we shall usually use 13 
or 14 singular points in the calculations in order to show how the method works in 
such conditions. 

As another example, let us consider a stationary spherical particle situated in an 
axisymmetrical stagnation-point flow given by the equation 

Kr = A,(zzi,+yzi,-zZiz). (26) 
If the centre of the particle lies on the z-axis, only the Fz component of the force 
is non-zero owing to symmetry. Following Goren & O’Neill (1971), Fz can be 
expressed as Fz = 6npA, az2fo, 

where f, is the correction factor accounting for hydrodynamic particle-wall interaction. 
As h/a+ 00, f, approaches unity. Figure 5 shows the dependence of f, as a function 
of H calculated from the exact solution of the Stokes equation (solid line) according 
to Goren & O’Neill’s method. Points represent values obtained using the present 
technique. In  these calculations the number of surface and singular points were 26 
and 13, respectively. The limiting value off, as H t O ,  according to the exact solution, 
is equal to 3.230. The value obtained by the singularity method is 7.5 % higher and 
is equal to 3.470. For separations larger than 10 yo of the particle radius the difference 
between exact and calculated values is smaller than 5 %, and the error drops below 
1 yo for H > 0.4. Similar calculations for a spherical particle in a simple shear flow 
in the vicinity of the wall show that for H = 0.1 the error in the calculations is 3.51 % 
and as H + 0 grows to 9.0 % . 

Using the method discussed and taking advantage of the linearity of the Stokes 
equation, it is possible to calculate particle trajectories in any kind of flow. To do 
so one has first to calculate the hydrodynamic drag acting on the stationary particle 
in a specific flow field. Next one calculates all elements of the resistance, torque and 
coupling tensors for every particle. With this information it is possible to calculate 
the components of the translational and angular velocities. However such an 
approach is tedious and inefficient, especially for multiparticle systems. In the next 
section we wish to discuss a direct method of calculating particle velocities. 
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1 
0.1 1 H 10 

FIQURE 5. Drag correction factorf, for a stationary sphere placed symmetrically in a stagnation- 
point flow aa a function of particle-wall separation H :  solid line represents exact solution; dots 
calculated values. 

4. Velocities of particles 
Consider a system of N particles in an external flow field V .  Let qxt and cxt denote 

the respective external force and torque acting on the nth particle. Neglecting inertial 
effects, these forces must be matched by hydrodynamic forces acting on the particles. 
Taking into account (13) and (14) one can write this condition explicitly as 

Equations (27) and (28) provide 6N equations which can be regarded as equality 
constraints imposed on singular forces and sources. Therefore one can try to minimize 
a norm IIDt(x""')ll, where D,(xsn') is given by (12), in such a way that (27) and (28)  
are satisfied exactly. Two approaches were used; (i) the method of Lagrangian 
multipliers; and (ii) a direct least-squares solution of the system of linear equations 
with linear constraints by orthogonal transformations. 

4.1. Method of Lagrangian multipliers 
In order to simplify the notation, let us denote D,(xSn') = Gk, where k = 1,2,  . . . ,3SN 
is determined by a proper combination of subscripts i = 1, 2 , 3 ,  n' = 1,2, . . ., N and 
s = 1,2,  ..., S. Equation (12) can then be written as 

Gk = Cfi,x,+dk, (29 1 
where xi describes the unknown values of the singular forces (for 1 < 1 < 3MN) and 
sources (for 3M+ 1 < 1 < 4MN). For 4MN+ 1 < 1 < 4MN+6N, zt denotes the 
(unknown) values of the translational and angular velocities. The coefficients dk  
correspond to the external flow velocities at given surface points of the particles. 
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The constraints can be expressed as 

Ha = Z EaBx~:s-ga = 0, (30) 

where the matrix E and the vector 9, are determined using (27) and (28). Q, is a 
function to be minimized with linear constraints Ha = 0. Thus one can form a 
functional 

B 

9 

9 = Z Gi+AaH,, (31) 
k 

where A, are the multipliers. In order to minimize 9, its first derivatives with respect 
to the unknown values of x must equal 0, 

a s  
3x7 
- = 0. 

This procedure leads to a system of linear equations of the form 

with 4MN unknown values of the forces and sources intensities, 6N values of 
translational and angular velocities and 6N unknown values of A. 

It is worthwhile to note that information about the external flow field and external 
forces acting on the particles is necessary to determine the right-hand side of the 
equation, but this does not influence the matrix on the left-hand side. Since during 
calculations most of the computer time is spent calculating the coefficients of the 
matrix, it is possible to solve the problem for various external flow fields and forces 
after having calculated the values of the left-hand-side matrix once and for all: In 
this way one can make the calculations more efficient. 

4.2.  Results of the Lagrangian multipliers method 
As an example of the applicability of the method let us consider a spherical particle 
in the vicinity of a wall. We will look for the translational and angular velocities of 
(i) the sphere in a simple shear flow, and (ii) of the particle undergoing motion due 
to a constant force acting parallel to the wall. In both cases i t  will be assumed that 
the sphere is free to rotate and that no external torques are exerted on it. The 
calculations were performed with 26 surface points and 7 or 13 singular points 
distributed exactly as described above. 

In simple shear flow, far away from the wall, the sphere follows the fluid stream- 
lines with velocity hG, where h is the distance between the wall and the centre of the 
particle and G is the shear rate. It will also rotate with angular velocity wy = ?$2. As 
the sphere approaches the solid surface both translational and rotational velocities 
are damped. Analytically the solution process can be split into two steps as discussed 
by Goldman, Cox & Brenner (1967). Taking advantage of the linearity of the Stokes 
equation one can find fir3t the hydrodynamic forces and torques acting on a 
stationary sphere in a simple shear flow. In the next step, resistance forces acting 
on the sphere translating and rotating in a quiescent fluid can be found. By combining 
these results the translational and rotational velocity of the particle can be found. 
In  particular, when external forces and torques are absent, the velocity of the particle 
is matched in such a way that the sum of the hydrodynamic forces and torques is 
equal to zero. 

Table 2 presents values of  @/Gh and 2 q J G  for various particle-wall separations 
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h 
a 
- 

ca 
10.067 
2.3524 
1.5431 
1.1276 

1 1 0 1 1 0 
0.9996 0.9997 0.0 0.9995 0.9995 0 
0.9777 0.9778 0.0 0.9778 0.9776 0.0 
0.9218 0.9271 0.6 0.9237 0.9286 0.5 
0.7669 0.8451 10.2 0.7792 0.8744 12.5 

t exact solution of Stokes equation. 
3 results obtained by present technique. 

TABLE 2. Translational and angular velocities at a sphere moving 
near a wall in a simple shear flow 

using the present technique. Exact values are also given for comparison. As one can 
see, the error for h/a  > 1.5 is negligible. As the sphere approaches the wall, the errors 
grow. Since, as mentioned earlier, the discussed method gives finite values of the 
resistance coefficient for both perpendicular and parallel movement of the sphere in 
contact with the wall, the evaluated velocities are overestimated. 

During the calculations it was noted that the method reveals some numerical 
problems for specific positions of the sphere relative to the wall. In  these cases the 
system of linear equations seems to be numerically singular. This problem is especially 
pronounced for non-spherical particles. 

4.3. Orthogonal transformation method 

The system of linear equations (29) with linear constraints (30) can be solved directly 
using orthogonal transformations. In  principle, one may derive a lower-dimensional 
unconstrained least-squares problem which can be solved by the method outlined 
previously. In the next step, the solution of the derived problem can be transferred 
to obtain the solution of the original problem. Generally speaking, the system of linear 
equations Ex = g and the overdetermined system of linear equations Cx = d, can 
be found (assuming that matrix E is of order m,) by finding an orthogonal matrix 
K which when postmultiplied by E transforms E into a lower triangular matrix. 
Postmultiplying E and C by K gives 

I 

where El is a m, x m, non-singular lower triangular matrix. This_step allows one to 
find in an easy way the solution y1 of the system of equations El y, = d. As shown 
in Lawson & Hanson's book (1975) the solution of the constrained problem is equal 
to 

- - 
where yz is a least-square solution of C,y, =f- C, y,. Calculations using this method 
were based on algorithm LSE presented by Lawson & Hanson (1975). 
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FIGURE 6. Drag on a stationary spheroidal particle in a uniform flow as a function of particle 
geometry: curve 1 ,  oblate spheroid broadside-on and prolate spheroid end-on; curve 2, oblate 
spheroid edge-on and prolate spheroid broadside-on. 

4.4. Results of the least-square calculations 
The least-square approach proved to be both universal and trouble free. The 
algorithm used automatically selected a non-singular basis to the solution, allowing 
use of a very general numerical scheme without analysis of specific relations between 
variables such as singular forces, which could eventually exist due to the symmetry 
of the system. The only parameters which need be defined are: (i) shape of the 
particles; (ii) their positions; (iii) external forces and torques acting on the particles; 
and (iv) external fluid-flow field which would exist if the particles were absent. As 
a result of the calculations the translational and angular velocity of the particles are 
obtained directly. This allows use of the subroutine to calculate the trajectories of 
the particles by solving a system of ordinary differential equations : 

where x !~  and 52; describe spatial and angular positions of the particle respectively. 
As an example of the applicability of this method to non-spherical particles, let 

us consider a spheroidal particle moving in an otherwise quiescent fluid under the 
influence of a force directed perpendicularly to one of the semi-axes of the particle. 
The results of the calculations are shown in figure 6. In the case of an ellipsoid of 
semi-axis a, b, c with a being parallel to the direction of motion, the resistance is the 
same as that of a sphere of radius R, given by (Lamb 1953) 

8 abc 
3 X+aoa2' 

R =-  
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where 

and 

dA JOw [(aZ++h) ( b 2 + A )  (cZ++)]i' 

dA 
(a2 + A ) f  [(b2 + A )  (c2 + A)];'  

x = abc 

a,, = abc Jow 

(37) 

In case of a prolate spheroid end-on and an oblate spheroid broadside-on, the 
semi-axes b and c are equal and the problem reduces to calculation of Rs/c in terms 
of a/c .  Solving (32)-(38) and substitution in (36) yields 

In the case of a prolate spheroid broad-side-on and an oblate spheroid edge-on, a is 
equal to c and (36) reduces to 

8 / .  a2\f 

Curves 1 and 2 on figure 6 were calculated from (3940) and (41-42) respectively. Dots 
were obtained by the presented technique using 14 singular points distributed 
symmetrically near the centre of the particle a t  positions ( f O . O l , O , O ) ,  (0, f O . O l , O ) ,  
O , O ,  -10.01) and (f0.05, k0.05, f0.05). Surface points 66 in number have been used 
to define the shape of the spheroids. 

As expected, the error in the calculations is small for slightly deformed spheres and 
grows for large elongations. However, even when the singularities were distributed 
near the centre of the particle the error was below 3% for an aspect ratio of the 
spheroid below 2. For aspect ratios 0.7 to 1.6 the error is usually below 1 Yo for a wide 
class of distributions of the singularities. Also the number of surface points is not 
critical, unless they are unsymmetrically distributed. 

As a last example let us consider a spheroidal particle with aspect ratio 2 : 1 : 1 freely 
suspended in a simple shear flow. Calculations were performed using the same number 
and distributions of the singularities as above. Simple shear flow in dimensionless form 
can be expressed as v, = z, wy = 0, v, = 0. Initially the spheroid was oriented with 
its long axis in the direction of the flow, and for this orientation the translational 
velocity and angular velocity of the spheroid was calculated. Next, the particle was 
rotated by 16' with respect to the y-axis and new translational and angular velocities 
were calculated. This process was continued until the spheroid returned to its original 

, 
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FIGURE 7. Angular velocity wy of a spheroidal (2: 1 : 1) particle in a simple shear flow as a function 
of the orientation angle 4: circles and squares, particle centre-wall separation equal to 200 and 
2.1 respectively. 

4 

orientation. Rotation of the body was achieved by transformation of all surface points 
xs, ys, z, to their new positions. It was assumed that the body rotated through an angle 
q5 about a line through the body centre, whose direction-angles are a, p and y. The 
coordinates X,, Y,, and 2, of the new position of a point whose original coordinates 
were (xs, ys, zs) can be expressed by the equations 

x, = (E2-r2- !? + x 2 )  2, + 2(Er- Cx) Y S +  2(EC+ rx) z s ,  

Y3 = 2(f9 x,+ ( - E 2  +r2--$ + x 2 )  Ys +2(rC-Ex) 2s 9 

Z ,  = ~ ( E C - ~ X )  x , + ~ ( ~ C - E X )  yS+ ( - E 2 - ~ ' + ! ? + ~ ' )  7 

where E=cosasin(#),  C =  cosysin(&q5), 

and 7 = cosp sin(#), x = cos(#). 

Far away from the wall a spheroid in any angular orientation follows fluid 
streamlines. Its angular velocity depends on the angle between the long semi-axis and 
the z-axis of the coordinate system. The solid lines in figure 7 were calculated from 
Jeffery's (Burgers 1938) solution for the case of an ellipsoid of revolution. According 
to this solution the angular velocity of the particle wy can be expressed as 

, (43) 
G(a2 cos2 q5 + b2 sin2 q5) 

a2 + b2 
wy = 

where G is the shear rate. 
Dots in figure 7 have been calculated using the present technique. For all 

orientations of the spheroid, when the separation between particle and wall was large 
( z  > lOO), the difference between theoretical and calculated values of the angular 
velocity was below 1 yo. The broken line in figure 7 connects the calculated values 
of wt/ when the distance between particle and wall equals 2.1. As one can see, for q5 = 0' 
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and 180°, i.e. when the spheroid is oriented parallel to the wall, the angular velocity 
is reduced. However, for perpendicular orientations the angular velocity becomes 
almost identical to that for infinite separation. This is the result of the strong 
interaction between the lower end of the spheroid and the wall, enhancing the 
rotation. 

5. Discussion and concluding remarks 
The method presented allows one to find approximate values of hydrodynamic 

forces and torques as well as translational and angular velocities of particles in an 
arbitrary external flow field. Hydrodynamic interactions with a wall can easily be 
taken into account. As base functions of the method, singular fundamental solutions 
of the Stokes equation are used for a point force and a point source in the presence 
of the wall on which the no-slip boundary condition is applied. Because such solutions 
were also found for Stokeslets between two parallel flat plates (Linon & Michon 
1976a), the method can be easily generalized for channel flow. Stokeslets in two fluid 
spaces have been discussed by Aderogba (1 976). 

In order to calculate the hydrodynamic drag on spherical particles we have 
generalized Burgers’ idea of looking for such values of the singular forces, located in 
the particle centre, that make the mean values of the velocity components vanish 
over the individual particle surface. A numerical procedure which allows one to 
perform the calculations requires only information about positions of the spheres and 
the external flow field. This approach gives fairly good results for systems of two or 
more spheres placed in a uniform flow or moving under external forces. Effects related 
to wall interactions can be readily studied with relatively small errors, provided that 
the particle-wall separation is higher than the particle diameter. In  order to make 
the calculations more accurate for smaller separations and also to allow the 
calculation of the torque on the particles, we have introduced additional singularities 
distributed in the vicinity of the particle centre. Optimum values of the additional 
singular forces and sources can be found by minimizing the residual velocity in a 
number of surface points of each particle after introducing one singular force in a 
manner described earlier. It was found, however, that a one-step approach in which 
only the differences between the fluid and surface-element velocities are minimized, 
e.g. in least-square sense, leads to the same results. It appears that the least-square 
approximation gives reasonable results. Also the solution obtained by minimizing the 
L1 norm seems to give proper results, although the procedure was found not to 
be adequate to provide proper results in every situation. Attempts to use the 
Chebyshev norm were even more discouraging. 

Test calculations show that using 6 or 12 singular forces and sources placed 
symmetrically in the vicinity of the sphere centre can give results with errors below 
1 yo if no relative motion of the particles at small separations is observed. If such 
relative movement exists, e.g. when a sphere approaches a solid plane perpendicularly, 
the error is small for separations larger than 20% of the particle radii. However, it  
was shown that the error can be reduced to small values for even smaller separations 
if more singularities and more surface points are used in the calculations. 

In  order to obtain direct information about particle translational and angular 
velocities a general computational method was proposed. In  this case one must 
specify external forces and torques acting on the particle, their shape, the external 
flow field and the positions of the particles. In  such an approach translational and 
angular velocities can be calculated directly. The test calculations performed for 
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spherical and spheroidal particles show that a direct solution by orthogonal trans- 
formations of the linearly constrained least-square problem is more efficient than the 
Lagrangian multiplier approach which leads to a determined system of linear 
equations. The accuracy in the calculations of drag forces by both methods seems to 
be in the same range when 14 singular points are used. For non-spherical particles 
it was found that, when the singularities were distributed in the vicinity of the particle 
centre, fairly good results were obtained if the aspect ratio of the ellipsoid of 
revolution was within the range 0.5-2.0. 

Test calculations show that the results are fairly insensitive to the distribution of 
the singularities. For example, in the case of spheroids no improvement was achieved 
when the singularities were distributed on an ellipsoidal instead of a spherical surface 
situated inside the particle. However for very elongated objects, e.g. for long 
cylinders, better results may be expected when the singularities are distributed along 
the body rather than in the centre. 

Finally, we wish to discuss some advantages and disadvantages of the method as 
compared to others which are, or could be, used to solve similar problems. The 
proposed technique is an approximated one and some effort is required in order to 
find the error in the calculations. More detailed studies of the integral representation 
of the solutions can indicate the optimum distribution of singularities. This could 
make the method more relevant for analysis of specific systems. A method widely 
used in numerical analysis, of gaining information about errors by repeating the 
calculations with different number of singular and surface points can provide 
sufficient insight into the accuracy of these calculations. The advantages of the 
method are evident. The calculations are easy to perform, relatively fast and the 
technique is general in the sense that it can deal with systems without symmetry; 
however, if symmetry exists it can be readily exploited in order to reduce the amount 
of computation. The presented technique can be used to calculate directly the 
translational and angular velocities of the individual particles. Calculations are 
equally easy to perform for spherical as well as for non-spherical particles, and a wide 
range of wall interactions can readily be taken into account. 

The singularity method described in the paper can be regarded as useful 
alternative to other techniques especially when particleparticle and particlewall 
separations are not too small. For such cases the boundary-collocation or integral- 
equation techniques can provide better results. 

The author wishes to thank Drs T. G. M. van de Ven, R. G. Cox and S. G. Mason 
of their help, discussion and stimulating interest in this research. 
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